Class

net.sansa_stack.rdf.flink.stats

StatsCriteria

Related Doc: package stats

Permalink

implicit class StatsCriteria extends Logging

Linear Supertypes
Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. StatsCriteria
  2. Logging
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new StatsCriteria(triples: DataSet[Triple])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. val env: ExecutionEnvironment

    Permalink
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. val logger: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. def stats: DataSet[String]

    Permalink

    Compute distributed RDF dataset statistics.

    Compute distributed RDF dataset statistics.

    returns

    VoID description of the given dataset

  18. def statsClassUsageCount(): AggregateDataSet[(Node, Int)]

    Permalink

    2. Class Usage Count Criterion
    Count the usage of respective classes of a datase, the filter rule that is used to analyze a triple is the same as in the first criterion.

    2. Class Usage Count Criterion
    Count the usage of respective classes of a datase, the filter rule that is used to analyze a triple is the same as in the first criterion. As an action a map is being created having class IRIs as identifier and its respective usage count as value. If a triple is conform to the filter rule the respective value will be increased by one. Filter rule : ?p=rdf:type && isIRI(?o) Action : M[?o]++

    returns

    DataSet of classes used in the dataset and their frequencies.

  19. def statsClassesDefined(): DataSet[Node]

    Permalink

    3. Classes Defined Criterion
    Gets a set of classes that are defined within a dataset this criterion is being used.

    3. Classes Defined Criterion
    Gets a set of classes that are defined within a dataset this criterion is being used. Usually in RDF/S and OWL a class can be defined by a triple using the predicate rdf:type and either rdfs:Class or owl:Class as object. The filter rule illustrates the condition used to analyze the triple. If the triple is accepted by the rule, the IRI used as subject is added to the set of classes. Filter rule : ?p=rdf:type && isIRI(?s) &&(?o=rdfs:Class||?o=owl:Class) Action : S += ?s

    returns

    DataSet of classes defined in the dataset.

  20. def statsDistinctEntities(): DataSet[Triple]

    Permalink

    16. Distinct entities
    Count distinct entities of a dataset by filtering out all IRIs.

    16. Distinct entities
    Count distinct entities of a dataset by filtering out all IRIs. Filter rule : S+=iris({?s,?p,?o}) Action : S

    returns

    DataSet of distinct entities in the dataset.

  21. def statsDistinctObjects(): DataSet[Triple]

    Permalink

    Distinct Objects
    Count distinct objects within triples.

    Distinct Objects
    Count distinct objects within triples. Filter rule : isURI(?o) Action : M[?o]++

    returns

    DataSet of objects used in the dataset.

  22. def statsDistinctSubjects(): DataSet[Triple]

    Permalink

    Distinct Subjects
    Count distinct subject within triples.

    Distinct Subjects
    Count distinct subject within triples. Filter rule : isURI(?s) Action : M[?s]++

    returns

    DataSet of subjects used in the dataset.

  23. def statsObjectVocabularies(): AggregateDataSet[(String, Int)]

    Permalink

    32. Object vocabularies
    Compute object vocabularies/namespaces used through the dataset.

    32. Object vocabularies
    Compute object vocabularies/namespaces used through the dataset. Filter rule : ns=ns(?o) Action : M[ns]++

    returns

    DataSet of distinct object vocabularies used in the dataset and their frequencies.

  24. def statsPredicateVocabularies(): AggregateDataSet[(String, Int)]

    Permalink

    31. Predicate vocabularies
    Compute predicate vocabularies/namespaces used through the dataset.

    31. Predicate vocabularies
    Compute predicate vocabularies/namespaces used through the dataset. Filter rule : ns=ns(?p) Action : M[ns]++

    returns

    DataSet of distinct predicate vocabularies used in the dataset and their frequencies.

  25. def statsPropertiesDefined(): DataSet[Node]

    Permalink

    Properties Defined
    Count the defined properties within triples.

    Properties Defined
    Count the defined properties within triples. Filter rule : ?p=rdf:type && (?o=owl:ObjectProperty || ?o=rdf:Property)&& !isIRI(?s) Action : M[?p]++

    returns

    DataSet of predicates defined in the dataset.

  26. def statsPropertyUsage(): AggregateDataSet[(Node, Int)]

    Permalink

    5. Property Usage Criterion
    Count the usage of properties within triples.

    5. Property Usage Criterion
    Count the usage of properties within triples. Therefore an DataSet will be created containing all property IRI's as identifier. Afterwards, their frequencies will be computed. Filter rule : none Action : M[?p]++

    returns

    DataSet of predicates used in the dataset and their frequencies.

  27. def statsSubjectVocabularies(): AggregateDataSet[(String, Int)]

    Permalink

    30. Subject vocabularies
    Compute subject vocabularies/namespaces used through the dataset.

    30. Subject vocabularies
    Compute subject vocabularies/namespaces used through the dataset. Filter rule : ns=ns(?s) Action : M[ns]++

    returns

    DataSet of distinct subject vocabularies used in the dataset and their frequencies.

  28. def statsUsedClasses(): DataSet[Triple]

    Permalink

    1. Used Classes Criterion
    Creates an DataSet of classes are in use by instances of the analyzed dataset.

    1. Used Classes Criterion
    Creates an DataSet of classes are in use by instances of the analyzed dataset. As an example of such a triple that will be accepted by the filter is sda:Gezim rdf:type distLODStats:Developer. Filter rule : ?p=rdf:type && isIRI(?o) Action : S += ?o

    returns

    DataSet of classes/instances

  29. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  30. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  31. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped